jueves, 18 de marzo de 2010

FISICA MODERNA

La física moderna comienza a principios del siglo XX, cuando el alemán Max Planck, investiga sobre el “cuanto” de energía, Planck decía que eran partículas de energía indivisibles, y que éstas no eran continuas como lo decía la física clásica, por ello nace esta nueva rama de la física que estudia las manifestaciones que se producen en los átomos, los comportamientos de las partículas que forman la materia y las fuerzas que las rigen. (También se le llama física cuántica).
En los temas anteriormente tratados, la física clásica no servía para resolver los problemas presentados, ya que estos se basan en certezas y la física moderna en probabilidades, lo que provocó dificultades para adaptarse a las nuevas ideas. Los temas tratados anteriormente no podían ser resueltos por la física clásica.
En
1905, Albert Einstein, publicó una serie de trabajos que revolucionaron la física, principalmente representados por “La dualidad onda-partícula de la luz” y “La teoría de la relatividad” entre otros. Estos y los avances científicos como el descubrimiento de la existencia de otras galaxias, la superconductividad, el estudio del núcleo del átomo, y otros, permitieron logran que años más tarde surgieran avances tecnológicos, como la invención del televisor, los rayos x, el radar, fibra óptica, el computador etc.
La misión final de la física actual es comprender la relación que existe entre las fuerzas que rigen la naturaleza: la gravedad, el electromagnetismo, la fuerza nuclear fuerte y la fuerza nuclear débil. Comprender y lograr una teoría de unificación, para así poder entender el universo y sus partículas. Se conoce, generalmente, por estudiar los fenómenos que se producen a la velocidad de la luz o valores cercanos a ella o cuyas escalas espaciales son del orden del tamaño del
átomo o inferiores.
Se divide en:
La
mecánica cuántica
La teoria de la relatividad
Casi todo lo planteado en el siglo XIX fue puesto en duda y al final fue remplazado durante el siglo XX, y de esta misma forma puede ocurrir actualmente, a medida que se produzcan resultados las nuevas investigaciones, y se materialicen los nuevos conocimientos que se irán adquiriendo durante este nuevo siglo.
MECANICA CUANTICA:
En física, la mecánica cuántica (conocida originalmente como mecánica ondulatoria)[1] [2] es una de las ramas principales de la física que explica el comportamiento de la materia y de la energía. Su campo de aplicación pretende ser universal (salvando las dificultades), pero es en el mundo de lo pequeño donde sus predicciones divergen radicalmente de la llamada física clásica.
De forma específica, se considera también mecánica cuántica, a la parte de ella misma que no incorpora la
relatividad en su formalismo, tan sólo como añadido mediante teoría de perturbaciones.[3] La parte de la mecánica cuántica que sí incorpora elementos relativistas de manera formal y con diversos problemas, es la mecánica cuántica relativista o ya, de forma más exacta y potente, la teoría cuántica de campos (que incluye a su vez a la electrodinámica cuántica, cromodinámica cuántica y teoría electrodébil dentro del modelo estándar)[4] y más generalmente, la teoría cuántica de campos en espacio-tiempo curvo. La única interacción que no se ha podido cuantificar ha sido la interacción gravitatoria.
La mecánica cuántica es la base de los estudios del
átomo, los núcleos y las partículas elementales (siendo ya necesario el tratamiento relativista) pero también en teoría de la información, criptografía y química.
TEORIA DE LA RELATIVIDAD:
La primera, publicada en 1905, trata de la física del movimiento de los cuerpos en ausencia de fuerzas gravitatorias. La segunda, de 1915, es una teoría de la gravedad que reemplaza a la gravedad newtoniana pero se aproxima a ella en campos gravitatorios débiles. La teoría general se reduce a la especial en ausencia de campos gravitatorios.
No fue sino hasta el 07 de marzo de 2010 cuando fueron mostrados públicamente los manuscritos originales de Einstein por parte de la Academia Israelí de Ciencias. El manuscrito tiene 46 páginas de textos y fórmulas matemáticas redactadas a mano, había sido ofrecido por Einstein a la Universidad hebraica de Jerusalén en 1925, con motivo de su inauguración en Palestina, entonces bajo mandato británico
Relatividad especial
La Teoría de la Relatividad Especial, también llamada Teoría de la Relatividad Restringida, publicada por
Einstein en 1905. Esta teoría describe la física del movimiento en el marco de un espacio-tiempo plano, describe correctamente el movimiento de los cuerpos incluso a grandes velocidades y sus interacciones electromagnéticas y se usa básicamente para estudiar sistemas de referencia inerciales. Estos conceptos fueron presentados anteriormente por Poincaré y Lorentz, que son considerados como originadores de la teoría. Si bien la teoría resolvía un buen número de problemas del electromagnetismo y daba una explicación del experimento de Michelson-Morley, esta teoría no proporciona una descripción relativista del campo gravitatorio.
Tras la publicación del artículo de Einstein, la nueva Teoría de la relatividad especial fue aceptada en unos pocos años por la práctica totalidad de los físicos y los matemáticos, de hecho personas como Poincaré o Lorentz habían estado muy cerca de llegar al mismo resultado que Einstein. La forma geométrica definitiva de la teoría se debe a
Hermann Minkowski, antiguo profesor de Einstein en la Politécnica de Zürich, acuñó el término "espacio-tiempo" (Raumzeit) y le dio la forma matemática adecuada[4] El espacio-tiempo de Minkowski es una variedad tetradimensional en la que se entrelazaban de una manera insoluble las tres dimensiones espaciales y el tiempo. En este espacio-tiempo de Minkowski, el movimiento de una partícula se representa mediante su línea de universo (Weltlinie), una curva cuyos puntos vienen determinados por cuatro variables distintas: Las tres dimensiones espaciales (,,) y el tiempo (). El nuevo esquema de Minkowski obligó a reinterpretar los conceptos de la métrica existentes hasta entonces. El concepto tridimensional de punto fue sustituido por el de evento. La magnitud de distancia se reemplaza por la magnitud de intervalo.
Relatividad general
Teoría de la Relatividad General
Esquema de la curvatura del espacio-tiempo alrededor de una masa con simetría esférica.
La relatividad general fue publicada por Einstein en
1915, y fue presentada como conferencia en la Academia de Ciencias Prusiana el 25 de noviembre. La teoría generaliza el principio de relatividad de Einstein para un observador arbitrario. Esto implica que las ecuaciones de la teoría deben tener una forma de covariancia más general que la covariancia de Lorentz usada en la teoría de la relatividad especial. Además de esto, la teoría de la relatividad general propone que la propia geometría del espacio-tiempo se ve afectada por la presencia de materia, de lo cual resulta una teoría relativista del campo gravitatorio. De hecho la teoría de la relatividad general predice que el espacio-tiempo no será plano en presencia de materia y que la curvatura del espacio-tiempo será percibida como un campo gravitatorio.
Debe notarse que el matemático alemán
David Hilbert escribió e hizo públicas las ecuaciones de la covarianza antes que Einstein. Ello resultó en no pocas acusaciones de plagio contra Einstein, pero probablemente sea más, porque es una teoría (o perspectiva) geométrica. La misma postula que la presencia de masa o energía «curva» al espacio-tiempo, y esta curvatura afecta la trayectoria de los cuerpos móviles e incluso la trayectoria de la luz

No hay comentarios:

Publicar un comentario